http://feeds.feedburner.com/~r/sciencedaily/top_news/top_health/~4/uc1O4RsiWaY
Stanford scientists have developed faster, more energy-efficient microchips based on the human brain — 9,000 times faster and using significantly less power than a typical PC. This offers greater possibilities for advances in robotics and a new way of understanding the brain. For instance, a chip as fast and efficient as the human brain could drive prosthetic limbs with the speed and complexity of our own actions.Stanford scientists have developed a new circuit board modeled on the human brain, possibly opening up new frontiers in robotics and computing.For all their sophistication, computers pale in comparison to the brain. The modest cortex of the mouse, for instance, operates 9,000 times faster than a personal computer simulation of its functions.Not only is the PC slower, it takes 40,000 times more power to run, writes Kwabena Boahen, associate professor of bioengineering at Stanford, in an article for the Proceedings of the IEEE.”From a pure energy perspective, the brain is hard to match,” says Boahen, whose article surveys how “neuromorphic” researchers in the United States and Europe are using silicon and software to build electronic systems that mimic neurons and synapses.Boahen and his team have developed Neurogrid, a circuit board consisting of 16 custom-designed “Neurocore” chips. Together these 16 chips can simulate 1 million neurons and billions of synaptic connections. The team designed these chips with power efficiency in mind. Their strategy was to enable certain synapses to share hardware circuits. The result was Neurogrid — a device about the size of an iPad that can simulate orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer.The National Institutes of Health funded development of this million-neuron prototype with a five-year Pioneer Award. Now Boahen stands ready for the next steps — lowering costs and creating compiler software that would enable engineers and computer scientists with no knowledge of neuroscience to solve problems — such as controlling a humanoid robot — using Neurogrid.Its speed and low power characteristics make Neurogrid ideal for more than just modeling the human brain. Boahen is working with other Stanford scientists to develop prosthetic limbs for paralyzed people that would be controlled by a Neurocore-like chip.”Right now, you have to know how the brain works to program one of these,” said Boahen, gesturing at the $40,000 prototype board on the desk of his Stanford office. …
Read More: Scientists create circuit board modeled on the human brain
lunedì 28 aprile 2014
Scientists create circuit board modeled on the human brain
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento